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Instabilities of fully developed rapid flow of a
granular material in a channel

By CHI-HWA WANG†, R. JACKSON  S. SUNDARESAN

Department of Chemical Engineering, Princeton University, Princeton, NJ 05844-5263, USA

(Received 27 July 1996 and in revised form 18 February 1997)

The equations of motion for ‘rapid’ flow of a granular material have fully developed
solutions representing flow driven by a body force, such as gravity, along a channel
bounded by plane parallel walls. The stability of these solutions to small perturbations
is investigated. For given properties of the particles and the channel walls it is found
that the condition of critical stability is a relation between the mean concentration
of the particles and the width of the channel. When the base state is unstable the fastest
growing modes are travelling waves propagating in the axial direction and these induce
characteristic patterns of variations in particle concentration, as well as velocity. These
instabilities are contrasted with those found for Couette shearing in an earlier
publication.

1. Introduction

In a previous paper (Wang, Jackson & Sundaresan 1996) we investigated the
stability of a layer of granular material sheared rapidly between parallel solid plates,
in the absence of gravity. This appears to be the first treatment of stability of a bounded
flow for granular materials, though several earlier publications addressed the stability
of an unbounded uniformly shearing material (Savage 1992; Babic! 1993a ; Schmid &
Kytomaa 1994) and direct dynamic simulations show clear indications of unstable
behaviour (Hopkins & Louge 1991; Goldhirsch, Tan & Zanetti 1993). The relation
between this work and our results on bounded shear is discussed in detail in our
previous paper (Wang et al. 1996).

In this paper we turn attention to the stability of a fully developed convective flow
of granular material along a channel bounded by parallel plane walls. The flow is
induced by a body force, for example gravity, directed along the channel. The
equations of motion and the boundary conditions are the same as those used in our
treatment of the bounded shear layer, but the instabilities found are of a distinctly
different nature.

2. Governing equations

Figure 1 shows the configuration to be studied and illustrates some notation.
Cartesian coordinates are set up with the x-axis vertical and the y-axis normal to the
boundaries of the channel, which is assumed to be infinite in extent in the z-direction.
The boundaries are vertical and are separated by a distance ∆, and the base state is one
of fully developed flow downward under gravity. In this state the normal force per unit
area exerted on the boundaries by the granular material is denoted by N.

† Present address : Department of Chemical Engineering, National University of Singapore.
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F 1. Flow in a vertical channel. N¯normal stress on channel walls,
g¯ specific gravity force.

The equations of motion are those used in Wang et al. (1996), augmented by a
gravitational force in the x-direction, namely
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Here g is the specific gravity force vector, ρ is the bulk density of the material, given
by ρ¯ ρ

p
ν, where ν is the volume fraction of solids and ρ

p
the density of the solid

material ; u is the local mean velocity, σ is the stress tensor for the granular assembly
and T is the grain temperature, defined as "
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fluctuation about the local mean velocity; q is the flux vector of the pseudo-thermal
energy associated with the fluctuations in particle velocity, and J denotes the rate of
dissipation of this energy, per unit volume, by inelastic collisions between particles.
D}Dt represents the material time derivative following the mean motion.

The closures adopted for σ, q and J are those of Lun et al. (1984), namely
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where S is the deviatoric part of the rate of deformation:
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where ν
m

denotes the solids volume fraction at closest random packing, taken to be
0.65.

Boundary conditions at the walls, which take account of momentum and energy
transfer between the walls and the flowing material, are the same as those used by
Wang et al. (1996) :
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In (7) and (8) n is the unit normal to the wall, pointing into the granular material, u
sl

is the velocity of the granular material in contact with the wall, and t is a unit vector
tangent to the wall, in the direction of the slip velocity. The nature of the wall is
characterized by φ«, a ‘specularity factor ’ (which measures the fraction of the
momentum of an incident particle in the direction of slip which is transmitted, on
average, to the wall in a collision) and e

w
, the coefficient of restitution for collisions

between particles and the wall.
We now restrict attention to the geometry of figure 1 and to motions confined to the

(x, y)-plane. Dimensionless variables are defined as follows:
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where u and � are the x and y components of velocity, and the equations of motion can
then be written as
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Here (10) is the continuity equation, (11) and (12) are the two components of
momentum balance, (13) is the balance of pseudo-thermal energy, and A and C are two
dimensionless parameters defined by
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p
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The boundary conditions at the walls of the channel are
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where Y¯ 0.5. In equations (10)–(18) the symbols f
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denote dimensionless functions

of ν defined in table 1.
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The base state, whose stability will be investigated, is a steady fully developed flow
in the x-direction. For such a flow the continuity equation is satisfied trivially, and
equations (11), (12) and (13) simplify to
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The boundary conditions retain the form (15)–(18).
For the base-state flow it is convenient to define a cross-sectional average volume

fraction νa and an average dimensionless velocity ua * by
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The second integral above, equal to νa ua *, is a dimensionless measure of the volume flux
of solid material down the channel.

3. Steady fully developed flow

For this case the governing equations are (19)–(21), together with the boundary
conditions (15)–(18), and some general properties of the solution can be deduced by
inspection. Apart from physical properties of the particles and the walls, characterized
by φ«, e

w
and e

p
(which enters through the factor η in the functions f

"
–f

)
), the equations

contain only two parameters, namely A and C. These determine the solution
completely, and hence the value of νa , as given by (22a). Thus A and B may be replaced
by νa and ∆}d (¯ 1}C ) as the pair of parameters determining the solution. The
dimensionless equations (10)–(13), which describe general time-dependent motions,
contain no parameters other than A and C, so their solutions are also determined by
the values of νa and ∆}d. Since A is determined by these parameters it also follows from
(14a) that N£∆.

Solutions of the equations for steady fully developed flow were generated numerically
using the finite difference procedure described by Johnson & Jackson (1987), with
values for the material properties specified in table 2, and some results are shown in
figures 2, 3 and 4. Each figure shows dimensionless temperature, velocity and solids
fraction profiles, for two different conditions at the bounding walls. Two sets of curves
correspond to boundary conditions of the form (15)–(18), with e

w
¯ 0.5 and e

w
¯ 0.97,

respectively.
In each case the most striking feature is the presence of a core of relatively high

density centred at the middle of the channel. As can be seen by comparing figures 2 and
4, as the width of the channel is increased, the fraction of the width occupied by the
dense core does not change significantly, but the density within the core is markedly
increased. This is a general feature, as confirmed by computations over a wide range of
channel widths. Increasing the mean volume fraction of solids from 0.15 to 0.4 has the
effect of increasing the density all across the channel, of course, and in figure 3 it is seen
that the density at the centre of the channel approaches 0.6, quite close to the maximum
permissible value. This figure also shows that the velocity profile is flattened across the
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F 2. Fully developed motion with two wall conditions. Parameter values as in table 2 with
e
w
¯ 0.5 (sink wall, solid curve) and e

w
¯ 0.97 (source wall, dotted curve). (νa ,∆}d )¯ (0.15, 33.3).

Particle diameter, d : 0.0018 m
Solid material density, ρ

p
: 2980 kg m−$

Particle–particle coefficient of restitution, e
p
: 0.95

Specularity coefficient for wall collisions, φ« : 0.6
Parameter, α : 1.6

T 2. Material properties

region of high density, which is therefore beginning to behave as a plug of material near
dense packing, which deforms little as it moves. In each case the granular temperature
has a minimum at the point of highest density on the centreline, as might be expected.
Changing the nature of the boundary condition at the walls has only a minor effect on
the solution in this core region, but a marked influence on the solids fraction and
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F 3. As figure 2 but for (νa ,∆}d )¯ (0.40, 33.3).

granular temperature profile near the walls. With e
w

¯ 0.97, when the walls act as
sources of pseudo-thermal energy, the temperature decreases on moving away from the
wall and, correspondingly, the solids volume fraction increases. When e

w
¯ 0.5, on the

other hand, when the walls act as sinks for pseudo-thermal energy, the temperature
initially increases on moving away from the walls, while the solids volume fraction
decreases. With sink walls, therefore, the central maximum in density is flanked by two
minima and, correspondingly, the central minimum in temperature is flanked by two
maxima. The core of increased density at the centre of the channel was also seen by
Nunziato & Passman (1980) and by Babic! (1993b), but neither of these authors studied
walls which act as sinks for pseudo-thermal energy, so they did not observe the
behaviour just described.

Since the values of νa and ∆}d determine the steady solution they also determine both
the flux and the mean velocity of solids, as defined in (22), and these quantities are
shown in Figure 5. Both increase as the channel width is increased, as would be
expected. For each value of the channel width, on the other hand, there exists a value
of νa that maximizes the mean velocity and a second, larger value of νa that maximizes
the solids flux.
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F 4. As figure 2 but for (νa ,∆}d )¯ (0.15, 66).

4. Stability of the fully developed flows

The stability of the fully developed flows is investigated by introducing small
perturbations of the form
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and linearizing the equations of motion (10)–(13) and the boundary conditions
(15)–(18) in these perturbations. The procedure is entirely conventional, as described
in Wang et al. (1996). The result is a set of ordinary differential equations in the
variables u

e
, �

e
, ν

e
and T

e
, subject to two-point boundary conditions, constituting an

eigenvalue problem for Ω. This is converted to a matrix eigenvalue problem by taking
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F 6. Contour map of the dimensionless growth rate Ω
r
for the least-stable modes in the (νa , d}∆)-

plane. Parameter values as in table 2, with e
w
¯ 0.5. (SDW¯ symmetric density waves, ASDW¯

asymmetric density waves.)

finite differences, and the resulting eigenvalues are computed for a sequence of values
of K

x
to generate a dispersion relation for each set of values of the physical parameters

of the problem. The eigenvalue with the largest real part, for all values of K
x

and all
branches of eigenvalues, is then said to define the dominant mode for the given values
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F 7. Dispersion relations for the least stable modes at (νa ,∆}d )¯ (0.15, 33.3). Parameter values
as in table 2 and e

w
¯ 0.5 (solid curve), e

w
¯ 0.97 (dotted curve). (a) Dimensionless growth rate.

(b) Dimensionless velocity of propagation.

of the physical parameters. For these parameter values the fully developed flow is
classified as stable or unstable depending on the sign of the real part of the eigenvalue
for the dominant mode.

Since the full equations of motion (10)–(13) introduce no new parameters, in
addition to νa and ∆}d, the results of the stability computations can be presented as a
contour map of the real part of the dominant eigenvalue in the (νa , d}∆)-plane. Figure
6 shows such a map for a system with the parameter values in table 2, and with
e
w

¯ 0.5, when the walls act as energy sinks. Each contour is labelled with the
corresponding value of Ω

r
, and no contours are shown in the region of stability where

this is negative. At each value of νa it is seen that the flow is stable for small channel
width, but becomes unstable when the width is increased. The range of stability extends
farthest when νa E 0.3. The contours shown clearly belong to three different branches
of eigenvalues, which dominate in different parts of the plane. Segments from two of
these branches form contours with values of Ω

r
between zero and 0.3, while eigenvalues

from a third branch, indicated by the heaviest lines, have values of Ω
r
which extend as

high as 3.0. This branch is dominant for wide channels with low to moderate values of
the solids concentration.

We will now examine the dispersion relations and the nature of the eigenfunctions
at the three points of the (νa , d}∆)-plane labelled A, B and C in figure 6. These are
located so that their dominant eigenvalues belong to each of the three separate
branches identified above. Figure 7 (continuous lines) shows the dimensionless growth
rate and the dimensionless velocity of propagation, as functions of K

x
, for the least-
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F 8. Eigenfunctions of the particle concentration for the least-stable mode at various values of
K

x
, with (νa ,∆}d )¯ (0.15, 33.3). Parameter values as for figure 6. (a) K

x
¯ 0.1, (b) K

x
¯ 1.5,

(c) K
x
¯ 2.0, (d ) K

x
¯ 2.2, (e) K

x
¯ 2.4, ( f ) K

x
¯ 3.5.

stable branches of eigenvalues at point A, where (νa ,∆}d )¯ (0.15, 33.3). The least-
stable eigenvalue clearly switches branches at K

x
E 2.2, since two smooth curves for Ω

r

cross there and there is a step change in the velocity. (Closer examination of the
apparent kinks in the curves near K

x
¯ 0.2 reveals that there is actually a smooth

minimum in Ω
r
and a smooth maximum in the velocity there, with no switch between

branches of eigenvalues.) The broken lines in figure 7 are the dispersion relation
obtained when the value of e

w
is changed to 0.97, so that the walls act as sources of

pseudo-thermal energy. Once again there are two branches which, though displaced,
clearly correspond to the branches found with the sink walls. Returning to e

w
¯ 0.5,
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F 9. Dispersion relations for the least stable modes at (νa ,∆}d )¯ (0.40, 33.3). Parameter values
as in table 2 and e

w
¯ 0.5 (solid curve), e

w
¯ 0.97 (dotted curve). (a) Dimensionless growth rate.

(b) Dimensionless velocity of propagation.

figure 8 shows eigenfunctions for the volume fraction of solids as contour plots in the
(x, y)-plane, with the darker shading representing denser material. These are presented
for a sequence of values of K

x
, as specified in the caption, and the physical nature of

the perturbations is seen by imagining each pattern to move in the x-direction with the
corresponding eigenvelocity. For K

x
% 2.2 the patterns are symmetric about the

centreline of the channel but for larger values of K
x
, when the largest eigenvalue has

shifted to a different branch, the patterns become antisymmetric. At this point of the
(νa ,∆}d )-plane the dominant eigenvalue belongs to the branch of symmetric density
eigenfunctions, and is found at K

x
E 0.8, where the dimensionless velocity of

propagation is seen to be approximately 7. Reference to figure 2 shows that the
dimensionless velocity of the material in the unperturbed steady state is approximately
6.5 on the centreline of the channel. Thus, the prominent regions of alternating high
and low density, which are found along the centreline, move with a speed comparable
to, but slightly greater than that of the material at their location. This is in complete
contrast with the instabilities of plane Couette flow previously reported by the present
authors (Wang et al. 1996), which generated density patterns fixed in space.

The dispersion relations at point B of figure 6, where (νa ,∆}d )¯ (0.4, 33.3), are
shown in figure 9, with continuous lines once again corresponding to e

w
¯ 0.5 and

broken lines to e
w

¯ 0.97. There are now switches between four different branches of
eigenvalues, as indicated most clearly by jumps in the velocity of propagation. With
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F 10. Eigenfunctions of the particle concentration for the least-stable mode at various values
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, with (νa ,∆}d )¯ (0.40, 33.3). Parameter values as for figure 6. (a) K
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¯ 2.0, (d ) K
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e
w

¯ 0.5 eigenfunctions for the volume fraction at a sequence of values of K
x
are shown

in figure 10. The dominant mode occurs at K
x
E 0.2 and the corresponding

eigenfunction appears in panel (a). It is again symmetric about the centreline, but
differs from the patterns of figure 8 in that there are two rows of regions of alternating
high and low density, displaced equally on each side of the centreline. Figure 10(b, c)
shows density eigenfunctions from the second branch of eigenvalues encountered in the
dispersion relation. Once again these are symmetric about the centreline and consist of
two rows of regions of alternating high and low density. Figures 10(c) and 10(d ) show
the eigenfunction just before the switch to the third branch of eigenvalues and just



192 C.-H. Wang, R. Jackson and S. Sundaresan

0 1 2 3 4 5

(a)

Kx

Xr

0 1 2 3 4 5

Kx

(b)

2.5

0.2

1.5

0.1

0.5

0

–0.5

SDW

ASDW

SDW

ASDW

16

14

12

10

8

Xi

Kx

F 11. Dispersion relations for the least stable modes at (νa ,∆}d )¯ (0.15, 66). Parameter values
as in table 2 and e

w
¯ 0.5 (solid curve), e

w
¯ 0.97 (dotted curve). (a) Dimensionless growth rate.

(b) Dimensionless velocity of propagation.

after, respectively. It is seen that there is a significant change in the nature of the density
pattern. On the third branch (figure 10d, e) the pattern is antisymmetric about the
centreline. As before there are rows of alternating regions of high and low density
disposed on each side of the centreline, but now the regions of high density in one row
face the regions of low density in the other. Finally, figure 10( f ) shows an
eigenfunction from the fourth branch of eigenvalues and, once again, this pattern is
antisymmetric, closely resembling that in figure 10(e). The dominant mode at this
location in the (νa ,∆}d )-plane, which is found at K

x
E 0.2, is of the symmetric type and

its dimensionless speed of propagation is 1.4. The regions of high and low density are
centred at Y¯³0.2, where figure 3 shows that the dimensionless speed of the granular
material in the unperturbed state is 4.4. Thus, in this case, the regions of high and low
density move at only about one third of the speed of the granular material in their
neighbourhood.

The dispersion relations for point C, where (νa ,∆}d )¯ (0.15, 66), are shown in figure
11, and with e

w
¯ 0.5 it is seen that the eigenvalue with largest growth rate switches

branches only once, at K
x
E 2.2. Eigenfunctions of the density perturbations are

displayed in figure 12 for four values of K
x
, two from each branch of eigenvalues. For

K
x
! 2.2 these are symmetric about the centreline, while for larger values of K

x
they

are antisymmetric and the dominant eigenvalue, at K
x
¯ 3.8, belongs to the

antisymmetric density pattern shown in figure 12(d ). The dimensionless growth rate of
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F 12. Eigenfunctions of the particle concentration of the least-stable mode at various values
of K

x
, with (νa ,∆}d )¯ (0.15, 66). Parameter values as for figure 6. (a) K

x
¯ 0.8, (b) K

x
¯ 2.0,

(c) K
x
¯ 2.2, (d ) K

x
¯ 3.8.

this mode is approximately 1.9, much larger than the growth rates of the dominant
modes at points A and B of the (νa ,∆}d )-plane. Its dimensionless speed of propagation
is 10.8, much larger than that of the dominant mode at point B and larger than, but
comparable with, the speed of the dominant mode at point A. The two rows of regions
of alternating high and low density are centred roughly at Y¯³0.05, and reference to
figure 4 shows that the dimensionless speed of the granular material in the base state,
at this location, is 12.2. Thus, the most prominent density variations move with a speed
only a little less than that of the granular material in their neighbourhood.

Note that the coordinates are scaled in different ways for the ordinate and the
abscissa in figures 8, 10 and 12. The coordinate y, measuring distance across the
channel, is scaled by the channel width, while the x-coordinate is scaled by twice the
wavelength of the perturbation. To yield an x-coordinate scaled in the same way as y
we have

x

∆
¯

x

2λ
x

04π

K
x

1 .
The factor in brackets takes the values 15.7, 62.8 and 3.3 at points A, B and C,
respectively, so the dominant modes at points A and B have wavelengths much longer
than the channel width, while the wavelength of the strongly unstable dominant mode
at point C is comparable with the channel width.
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F 13. Dimensionless propagation velocity of the dominant eigenmode as a function of νa and
∆}d. Parameters as for figure 6. Curves are shown only over intervals of νa and ∆}d for which the
system is unstable. Curves labelled ‘a ’ show the dimensionless mean velocity of the particles for
comparison.

The dimensionless speed of propagation of the dominant mode is exhibited as a
function of νa , for four different values of ∆}d, in figure 13. Also shown are curves
representing the mean velocity ua * in the base state, and from these it is clear that the
dominant modes move rather faster than the mean speed of the material when νa ! 0.3
and slower when νa " 0.3. Indeed, for the largest values of νa and smaller channel widths,
the instability waves actually move up the channel, counter to the flow of material.

The dimensionless average speed of the descending granular material in the channel
is a function of νa and ∆ only, so the dimensional average speed is proportional to g"/#,
where g is the specific gravity force. Thus, for given values of the channel width and
the mean concentration of the granular material, its average speed could be controlled
if g were adjustable. Nevertheless, as we have seen, the stability boundary is a relation
between νa and ∆, unaffected by such changes in the value of g and the resulting changes
in the flow rate of the granular material. Furthermore, in the unstable region both the
dimensionless growth rate of the dominant mode and its dimensionless velocity of
propagation depend only on νa and ∆, so the dimensional growth rate and dimensional
velocity are both proportional to g"/#. Thus, with given channel width and particle
concentration, if the flow rate is varied by changing the value of g, both the growth rate
of the dominant disturbance and its speed of propagation will be found to vary in
proportion to the flow rate. Consequently the growth distance, that is the distance the
disturbance travels while growing in amplitude by a factor e, is independent of the flow
rate.

Scrutiny of figures 7, 9 and 11 reveals that the pattern of the dispersion relations is
not changed when the boundary conditions change; only the positions of the switches
between the branches of eigenvalues and the associated jumps in velocity are altered.
This insensitivity of qualitative features of behaviour to the nature of the boundary
conditions is underlined by figure 14, which compares the density eigenfunctions of the
dominant modes at points A, B and C of the (νa ,∆}d )-plane, for boundary conditions
with both e

w
¯ 0.5 and e

w
¯ 0.97. At each point the contour maps for the cases of sink

and source walls are almost indistinguishable.
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F 14. Eigenfunctions of the particle concentration for the dominant instability at three points
of the (νa ,∆}d )-plane. (a) (νa ,∆}d )¯ (0.15, 33.3), e

w
¯ 0.5,K

x
¯ 0.68; (b) (νa ,∆}d )¯ (0.15, 33.3),

e
w
¯ 0.97,K

x
¯ 0.52; (c) (νa ,∆}d )¯ (0.4, 33.3), e

w
¯ 0.5,K

x
¯ 0.13; (d ) (νa ,∆}d )¯ (0.4, 33.3),

e
w
¯ 0.97,K

x
¯ 0.17; (e) (νa ,∆}d )¯ (0.15, 66), e

w
¯ 0.5,K

x
¯ 3.97; ( f ) (νa ,∆}d )¯ (0.15, 66),

e
w
¯ 0.97,K

x
¯ 4.77.

5. Conclusion

The instabilities reported here share some features of those found by Wang et al.
(1996) for plane Couette flow, but also differ in important respects. For plane Couette
flow two types of unstable mode were found: a rather weak one corresponding to the
development of layers of alternating high and low density parallel to the planes of
shear, and a stronger mode generating more complicated stationary patterns of density
variations. These were referred to as layering modes and stationary modes, respectively.
The layering modes are also present in unbounded plane shear flow but the stationary
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modes have no analogue in the unbounded case, and therefore owe their existence to
the presence of the boundaries. In the system investigated here all the instability modes
are associated with the presence of the bounding walls but, as in the case of the
stationary modes for plane Couette flow, their behaviour is found to be remarkably
insensitive to the physical nature of these walls, represented by the value of e

w
. Here,

however, the similarity between the two cases ends. In plane Couette flow all the
unstable density patterns are at rest in the frame for which the bounding walls have
equal and oppositely directed velocities, so the material itself moves through these
density patterns. In the present case, on the other hand, all the eigenmodes are
travelling waves and, for lower values of the solids volume fraction, they move at
speeds comparable with that of the granular material itself. Thus, the clusters of high
and low density in these modes convect with speeds comparable to that of the solid
material.

The physical mechanism of instability also appears to be different in the two cases.
For the layering mode in plane Couette flow we find that the condition of neutral
stability is unchanged if the inertial terms are omitted from the momentum balance and
the thermal inertia terms from the energy balance. Thus, the onset of this instability is
controlled entirely by the inelasticity of collisions between pairs of particles.
Nevertheless, the form of the dispersion relation between growth rate and wavenumber,
within the domain of instability, is influenced markedly by the presence of inertial
terms. In the absence of these terms the growth rate increases monotonically with the
spacing between the layers, while in the presence of inertia it passes through a
maximum, so that there is a dominant spacing for which the layering pattern grows
most rapidly. In contrast, the stationary modes for Couettte flow are inertial in origin;
they disappear if the inertial terms are omitted from the equations of motion. The
instabilities of vertical channel flow, found in the present paper, also require the
presence of the inertial terms; if the left-hand side of equation (2) is multiplied by an
adjustable numerical factor, all modes are found to become stable when this is
sufficiently small. It is less clear that inelasticity of particle–particle collisions is
necessary for instability. Certainly the neutral stability curve in figure 6 moves to the
left as the value of e

p
is increased, so the domain of stable behaviour becomes larger.

Also, when e
p
¯ 1, the flow is found to be stable to the smallest values of d}∆ explored

directly in our computations. However, it seems likely that unstable behaviour still
survives, though for smaller values of d}∆, since the assembly of particles then
degenerates into a classical dense gas, whose flow might be expected to be unstable in
a sufficiently wide channel. Unfortunately we cannot offer a detailed qualitative
explanation of the physical mechanism responsible for the instabilities. This is,
perhaps, not surprising. The mechanism of instability in the well known and much
simpler case of channel flow of an incompressible Newtonian fluid is also difficult to
visualize.

The system studied becomes more unstable as e
p

is decreased so it would be
interesting to investigate the behaviour with highly inelastic collisions. However, it
should be recalled that the equations of motion used here are derived on the
assumption that the coefficient of restitution differs only slightly from unity, so they do
not provide an adequate theoretical basis for such a study.

There are two other publications describing phenomena which, on the face of it,
might be related to the instabilities found here. Sanders & Ackermann (1991)
described ‘slug flow’ patterns generated in numerical simultations of the flow of an
assembly of inelastic circular disks down an inclined channel, and Raafat, Hulin &
Herrmann (1996) observed slugging in experiments on the flow of a granular material
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down a vertical pipe. The former may be a consequence of the development to high
amplitude of the instabilities we have found. However, we would be reluctant to
interpret the latter phenomenon in this way since, as is well known, the behaviour of
systems of this type is usually dominated by effects associated with interaction between
the particles and the interstitial air.
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